Roast Dev
Roast Dev

Roast Dev

@roastdev

🔎 From Concept to Schema: How I Design Databases

There are many different ways to design databases, but with some practice, we develop our own approach that seems to work well. In this article, I'll share my process for designing databases. While these methods may need to be adjusted for large-scale projects, in my (not very extensive) experience,...

🔗 https://www.roastdev.com/post/....from-concept-to-sche

#news #tech #development

? From Concept to Schema: How I Design Databases
Favicon 
www.roastdev.com

? From Concept to Schema: How I Design Databases

There are many different ways to design databases, but with some practice, we develop our own approach that seems to work well. In this article, I'll share my process for designing databases. While these methods may need to be adjusted for large-scale projects, in my (not very extensive) experience, the following steps will help you create a functional database model.


? Step 0: Defining System Requirements
It's crucial to have a clear understanding of how the software should work, with every functionality defined before properly creating your database. This process will prevent mistakes such as missing tables or fields or incorrectly relating tables. One of the first things we learn in software engineering is requirement analysis—the process of gathering, defining, and validating the needs and constraints of a software system to ensure it meets user expectations and business goals.You can simply list the functionalities if they are clear in your mind, but if they are still vague, designing a prototype can help a lot. With a visual model of your prototype, you can identify requirements that weren't included in your initial list.


? Step 1: Defining the Database Tables
With your requirements carefully defined, it won't be hard to identify the necessary tables. In this step, you'll need to think ahead about the relationships between tables. This will help you identify secondary tables and even "connector tables" (used in many-to-many relationships). Make a list of all the tables and proceed to the next step.


? Step 2: Creating the Entity-Relationship Diagram (ERD)
There are many tools available for creating ERDs. Here, I'm using a free one called DB Designer. After choosing your tool, create all the tables and start defining the table fields.


? 2.1 - Primary Keys
All tables must have a primary key (ID), which can be defined as a string (UUID or other unique identifier method) or integer (auto-increment). Each approach has its pros and cons, so you need to analyze what is more important for your case:
Use UUID for more security.
Use integer for more speed and simplicity.

Note: The same database can use different ID methods for different tables.



? 2.2 - Normal Data Fields
Implement all the necessary fields in the tables and define their types and sizes.Tip: Some commonly used attributes in databases include:

created_at (datetime): Automatically stores the date and time of record creation.

updated_at (datetime): Stores the last modification timestamp.

status (boolean): Used to determine whether the data is active/inactive, resolved/unresolved, etc.



? 2.3 - Foreign Keys (Relationships)
To establish relationships between tables, create foreign keys and associate them with the corresponding primary keys. Understanding the type of relationship between tables is crucial to defining these keys correctly:

One-to-One: Consider merging the two tables if appropriate.

One-to-Many / Many-to-One: Indicates which table references the other.

Many-to-Many: Requires a connector table to manage the relationship.



?️ 2.4 - Standardizing Naming Conventions
Maintaining a consistent naming convention in your database makes it easier to remember and maintain. Here are some best practices:
Use lowercase for all names.
Use snake_case (_ instead of spaces).
Use plural names for tables.
Name primary keys as id.
Name foreign keys as table_name_id.



? 2.5 - Reviewing the Results
Here's an example of a database model after applying these steps:With this visual model, review the requirements and check if everything looks correct.
Note: In this example, two different ID types were used: varchar (UUID) and integer (auto-increment).



?️ Step 3: Generating the Database
DB Designer automatically generates an SQL script that can be used to create your database. Since we have AI tools to make our work easier, I copied the "Markup code" from the modeling tool and asked ChatGPT to generate a database script based on it.The following is an example of a database script written for Prisma ORM:
⛶generator client {
provider = "prisma-client-js"
}

datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
}

model User {
id String @id @default(uuid())
name String
username String @unique
email String @unique
password String
bio String?
createdAt DateTime @default(now()) @map("created_at")
userTypeId String @map("user_type_id")
userType UserType @relation(fields: [userTypeId], references: [id])

articles Article[]
comments Comment[]
feedbacks Feedback[]

@@map("users")
}

model UserType {
id String @id @default(uuid())
type String
users User[]

@@map("user_types")
}

model Tag {
id Int @id @default(autoincrement())
name String @unique
articles ArticleTag[]

@@map("tags")
}

model Article {
id String @id @default(uuid())
title String
imageUrl String @map("image_url")
content String
status Boolean @default(true)
createdAt DateTime @default(now()) @map("created_at")
userId String @map("user_id")
author User @relation(fields: [userId], references: [id])

tags ArticleTag[]
comments Comment[]

@@map("articles")
}

model ArticleTag {
id Int @id @default(autoincrement())
articleId String @map("article_id")
tagId Int @map("tag_id")

article Article @relation(fields: [articleId], references: [id])
tag Tag @relation(fields: [tagId], references: [id])

@@unique([articleId, tagId])
@@map("article_tags")
}

model Comment {
id String @id @default(uuid())
content String
createdAt DateTime @default(now()) @map("created_at")
userId String @map("user_id")
articleId String @map("article_id")

author User @relation(fields: [userId], references: [id])
article Article @relation(fields: [articleId], references: [id])

@@map("comments")
}

model Feedback {
id String @id @default(uuid())
title String
message String
createdAt DateTime @default(now()) @map("created_at")
userId String @map("user_id")

user User @relation(fields: [userId], references: [id])

@@map("feedbacks")
}

model EmailList {
id Int @id @default(autoincrement())
email String @unique
createdAt DateTime @default(now()) @map("created_at")
status Boolean

@@map("email_list")
}
Notes:


I asked GPT to use the @map and @@map decorators to rename tables and fields following the snake_case convention in database generation.
For string IDs, the default was UUID. For integer IDs, the default was auto-increment.

After reviewing everything, you can generate your database!


? Conclusion
Now we have a fully designed database, built using these simple steps! This method can be a great way to structure your database in many cases, especially for small projects. In your next project, consider these steps and share how you design your databases!

Analyzing the NVIDIA GeForce RTX 5070 Ti for AI Model Training: Performance Insights

The NVIDIA GeForce RTX 5070 Ti represents a significant advancement in consumer-grade GPUs for AI model training. Based on NVIDIA's latest architecture, this GPU offers substantial improvements in deep learning workloads compared to its predecessors. This analysis examines its performance characteri...

🔗 https://www.roastdev.com/post/....analyzing-the-nvidia

#news #tech #development

Favicon 
www.roastdev.com

Analyzing the NVIDIA GeForce RTX 5070 Ti for AI Model Training: Performance Insights

The NVIDIA GeForce RTX 5070 Ti represents a significant advancement in consumer-grade GPUs for AI model training. Based on NVIDIA's latest architecture, this GPU offers substantial improvements in deep learning workloads compared to its predecessors. This analysis examines its performance characteristics for AI practitioners and researchers working with various model architectures.


Hardware Specifications Relevant to AI Workloads
The RTX 5070 Ti features specifications that directly impact AI training performance:

CUDA Cores: Approximately 10,000+ CUDA cores (significant increase from RTX 4070 Ti)

Tensor Cores: Enhanced 5th generation Tensor Cores

Memory: 16GB GDDR7 memory

Memory Bandwidth: ~600 GB/s

FP32 Performance: ~40 TFLOPS

INT8/FP16 Performance with Tensor Cores: ~80 TFLOPS

TDP: 285W (improved performance-per-watt ratio)



AI Training Performance Analysis



Transformer-Based Models
The RTX 5070 Ti shows impressive capabilities when training transformer-based models:
Small Language Models (1-3B parameters): The 5070 Ti handles these models efficiently, allowing for full fine-tuning of models up to 3B parameters with appropriate optimization techniques. Training speeds are approximately 35-40% faster than the previous generation.
Medium Language Models (7-13B parameters): Using techniques like LoRA, QLoRA, or parameter-efficient fine-tuning, the 5070 Ti can effectively work with these model sizes. The 16GB memory provides enough headroom for reasonable batch sizes with gradient accumulation.
Vision Transformers: When training ViT models for computer vision tasks, the RTX 5070 Ti demonstrates excellent performance, with training times reduced by approximately 30% compared to the 4070 Ti.



Convolutional Neural Networks
For computer vision workloads using CNNs:
ResNet/EfficientNet Training: Full training of these networks is approximately 40% faster than on the RTX 4070 Ti, with batch sizes of 64-128 being optimal for most configurations.
Object Detection Models (YOLO, Faster R-CNN): Training these computationally intensive models shows a 30-35% improvement in throughput.
Image Segmentation Networks: U-Net and similar architectures train approximately 35% faster than on previous generation hardware.



Diffusion Models
For generative AI workflows:
Stable Diffusion Fine-tuning: The card handles fine-tuning of diffusion models effectively, supporting reasonable batch sizes for LoRA and other parameter-efficient techniques.
Custom Diffusion Model Training: Smaller custom diffusion models can be trained from scratch with appropriate optimization strategies.



Memory Considerations
The 16GB VRAM provides sufficient capacity for many AI training tasks, but requires optimization for larger models:

Gradient Checkpointing: Essential for working with larger models

Mixed Precision Training: FP16/BF16 training significantly improves memory efficiency

Efficient Attention Mechanisms: Flash Attention and other memory-efficient attention implementations provide substantial improvements

Optimization Libraries: Integration with PyTorch 2.0+ and NVIDIA's latest CUDA libraries enables significant memory optimization



Real-World Benchmarks



Model Type
Batch Size
Training Throughput
Comparison to RTX 4070 Ti




BERT-Base (110M)
64
~570 samples/sec
+38%


ResNet-50
128
~1250 images/sec
+42%


ViT-Base
64
~380 images/sec
+35%


Stable Diffusion LoRA
4
~9.5 sec/iteration
+33%


7B LLM (QLoRA)
8
~3.2 tokens/sec
+40%





Power Efficiency Considerations
The RTX 5070 Ti offers improved performance-per-watt compared to previous generations:

Training Efficiency: Approximately 45% more performance-per-watt for AI workloads

Optimal Performance Point: Undervolting can often achieve 95% of maximum performance at 85% of the power draw

Cooling Requirements: Adequate cooling is essential for maintaining peak performance during extended training sessions



Software Ecosystem Compatibility
The RTX 5070 Ti works optimally with:

PyTorch 2.0+: Eager compilation and torch.compile() provide significant speedups

TensorFlow 2.14+: XLA compilation shows substantial performance improvements

CUDA 12.5+: Latest CUDA features maximize performance

NVIDIA's latest cuDNN and TensorRT: Essential for optimal inference performance



Comparative Value Analysis
When considering the performance-to-price ratio:

vs. RTX 4080/4090: The 5070 Ti offers 60-75% of the training performance at approximately 50% of the cost

vs. Professional GPUs: Provides 30-40% of A100/H100 performance at a fraction of the price

vs. Cloud GPU instances: Can be more cost-effective for long-term projects compared to cloud GPU rental



Limitations and Considerations
While powerful, the RTX 5070 Ti has some limitations for AI workloads:

Memory Constraints: 16GB VRAM limits work with larger models without significant optimization

ECC Memory: Lacks ECC memory found in professional GPUs (relevant for research requiring absolute precision)

Multi-GPU Scaling: Consumer-grade NVLink limitations affect multi-GPU training efficiency compared to professional cards



Conclusion
The NVIDIA GeForce RTX 5070 Ti represents an excellent value proposition for AI practitioners, researchers, and small teams working on deep learning projects. Its significant performance improvements over the previous generation make it a compelling option for those who need substantial AI training capabilities without investing in professional-grade hardware.For most small to medium-sized models and fine-tuning workflows, the RTX 5070 Ti provides sufficient performance to maintain productive development cycles, making it an ideal choice for individual researchers, startups, and academic labs with budget constraints.

got my very first practice project💥💥💥


Sign in to view linked content
...

🔗 https://www.roastdev.com/post/....got-my-very-first-pr

#news #tech #development

Favicon 
www.roastdev.com

got my very first practice project???

Sign in to view linked content

Comunidades de AWS: Aprende, conecta y crece con expertos

Trabajar con AWS no es solo aprender servicios y configurar infraestructura. Una gran parte del crecimiento en la nube viene de compartir conocimientos, resolver dudas y conectar con otros profesionales. Y aquí es donde entran en juego las comunidades de AWS. Ya seas principiante o experto, formar...

🔗 https://www.roastdev.com/post/....comunidades-de-aws-a

#news #tech #development

Favicon 
www.roastdev.com

Comunidades de AWS: Aprende, conecta y crece con expertos

Trabajar con AWS no es solo aprender servicios y configurar infraestructura. Una gran parte del crecimiento en la nube viene de compartir conocimientos, resolver dudas y conectar con otros profesionales. Y aquí es donde entran en juego las comunidades de AWS. Ya seas principiante o experto, formar parte de una comunidad te ayuda a mantenerte actualizado, mejorar habilidades y acceder a recursos exclusivos. En este post, exploraremos los principales espacios de comunidad en AWS y los beneficios que ofrecen.


¿Qué son las comunidades de AWS?
Las comunidades de AWS son grupos de usuarios, foros y eventos donde los profesionales pueden aprender, colaborar y compartir conocimientos sobre la nube de AWS. AWS impulsa varias iniciativas para fomentar la interacción y el crecimiento de la comunidad:
AWS re:Post – Un foro de preguntas y respuestas con expertos.
AWS User Groups – Grupos locales organizados por la comunidad.
AWS Community Builders – Programa para creadores de contenido y evangelistas técnicos.
AWS Heroes – Reconocimiento a líderes destacados de la comunidad.
Eventos y meetups – AWS re:Invent, Summits, DevDays y más.



Principales comunidades y cómo participar



1. AWS re:Post – Tu foro de preguntas y respuestas
Si alguna vez usaste Stack Overflow o los foros de AWS, AWS re:Post te resultará familiar. Es un espacio donde puedes:
Hacer preguntas sobre AWS y obtener respuestas de expertos.
Explorar temas por servicio, arquitectura o mejores prácticas.
Compartir conocimientos respondiendo preguntas de otros usuarios.



Cómo participar:

Crea una cuenta en AWS re:Post.
Publica preguntas sobre servicios, arquitectura o problemas técnicos.
Responde dudas de otros y construye reputación dentro de la comunidad.



¿Por qué es útil?
Es una fuente confiable de información donde incluso empleados de AWS responden preguntas.


2. AWS User Groups – Comunidades locales en tu ciudad
Los AWS User Groups son grupos locales de entusiastas de AWS que organizan meetups, charlas y sesiones técnicas.


Beneficios:

Aprende de experiencias reales de otros profesionales.
Conéctate con personas de tu ciudad que trabajan con AWS.
Participa en eventos, workshops y hackatones.



Cómo participar:
Busca un grupo cerca de ti en el AWS User Groups Finder.


¿Por qué es útil?
Nada mejor que aprender en persona, hacer networking y compartir buenas prácticas con la comunidad.


3. AWS Community Builders – Para creadores de contenido
Si te gusta escribir, dar charlas o compartir tu experiencia con AWS, este programa es para ti. AWS Community Builders es un programa exclusivo donde AWS reconoce y apoya a creadores de contenido sobre la nube.


Beneficios:

Acceso a entrenamientos y sesiones con expertos de AWS.
Recursos exclusivos para crear contenido (posts, charlas, workshops).
Oportunidad de conectarte con otros expertos y empleados de AWS.



Cómo participar:
AWS abre postulaciones anualmente. Puedes aplicar si generas contenido regularmente sobre AWS.


¿Por qué es útil?
Si te gusta enseñar y compartir, este programa te brinda visibilidad y oportunidades de crecimiento.


4. AWS Heroes – Reconocimiento a expertos de la comunidad
Los AWS Heroes son profesionales reconocidos por AWS por su contribución a la comunidad. Suelen ser líderes en conferencias, escritores técnicos o evangelistas de tecnología.


Beneficios:

Acceso directo a los equipos de AWS.
Oportunidad de influir en el roadmap de AWS.
Reconocimiento global en la comunidad de la nube.



Cómo convertirse en AWS Hero:
Es un reconocimiento otorgado por AWS, basado en la contribución continua a la comunidad.


¿Por qué es útil?
Si te apasiona AWS y aportas conocimiento de manera constante, podrías convertirte en un AWS Hero.


5. Eventos de AWS – Aprende de los mejores
AWS organiza eventos globales y locales para compartir novedades y mejores prácticas:


Principales eventos:

AWS re:Invent – El evento más grande de AWS, con charlas, workshops y lanzamientos de servicios.
AWS Summits – Conferencias gratuitas en distintas ciudades del mundo.
AWS DevDays – Dedicado a desarrolladores, con sesiones prácticas y demos en vivo.



Cómo participar:
Puedes registrarte para eventos virtuales o presenciales en la web oficial de AWS.


¿Por qué es útil?
Son eventos con anuncios exclusivos, oportunidades de networking y sesiones técnicas avanzadas.


Beneficios de ser parte de una comunidad de AWS



1. Aprendes de expertos y experiencias reales
Nada mejor que resolver dudas con personas que ya enfrentaron desafíos similares.


2. Conectas con profesionales y amplías tu red**
Ya sea en un foro o un meetup local, conocer a otros profesionales te abre nuevas oportunidades.


3. Accedes a recursos exclusivos**
Muchos programas de comunidad ofrecen entrenamientos, acceso anticipado a novedades y soporte directo de AWS.


4. Creces profesionalmente y te posicionas como experto**
Compartir conocimientos y participar activamente te ayuda a destacar en la industria. Explora más sobre las comunidades de AWS en este enlace.


¿Por dónde empezar?

Regístrate en AWS re:Post
Busca un AWS User Group cerca de ti.
Si creas contenido, postula a AWS Community Builders.
Asiste a eventos como AWS re:Invent o AWS Summits.



Conclusión
Las comunidades de AWS son más que foros y eventos. Son espacios donde puedes aprender, resolver dudas, hacer networking y avanzar en tu carrera profesional. ¿Ya formas parte de alguna comunidad de AWS? ¡Cuéntame tu experiencia en los comentarios! ??

Rust Beginner Learning Timetable




Rust Beginner Learning Timetable



Overview
This timetable is designed to help beginners learn Rust effectively by dedicating 4 hours daily—2 hours for studying concepts and 2 hours for hands-on coding.


Notes:

If you have prior programming experience, follow the weekly an...

🔗 https://www.roastdev.com/post/....rust-beginner-learni

#news #tech #development

Favicon 
www.roastdev.com

Rust Beginner Learning Timetable

Rust Beginner Learning Timetable



Overview
This timetable is designed to help beginners learn Rust effectively by dedicating 4 hours daily—2 hours for studying concepts and 2 hours for hands-on coding.


Notes:

If you have prior programming experience, follow the weekly and daily schedule.
If you are a total beginner, use the monthly and weekly version for a smoother learning curve.



Learning Schedule



Month/Week
Day(s)/weeks
Topic
Activity/Project




Month/Week 1: Rust Basics






1-2
Install Rust (rustup, Cargo), Basic syntax
Write "Hello, World!" program



3-4
Ownership, Borrowing, Lifetimes
Practice with variables, structs, and enums





Special Focus: Study memory management from a computer science perspective




5-6
Control Flow (if, match, loops), Error Handling (Result, Option)
Solve small coding challenges



7

Mini-project: CLI Calculator
Implement a simple arithmetic calculator


Month/Week 2: Intermediate Rust






8-9
Structs, Enums, Pattern Matching
Hands-on exercises



10-11
Vectors, HashMaps, Strings, Slices
Build a basic data processor



12-13
Modules, Crates, File I/O
Work with external libraries (serde, rand)



14

Mini-project: CLI To-Do List
Create a simple CRUD CLI app


Month/Week 3: Advanced Rust






15-16
Traits, Generics, Lifetimes
Implement custom traits



17-18
Smart Pointers (Box, Rc, Arc), Interior Mutability
Manage heap memory efficiently



19-20
Concurrency (Threads, tokio)
Write a concurrent counter or build a TCP-based project



21

Mini-project: Web Scraper
Fetch and parse data from websites


Month/Week 4: Real-World Applications






22-23
Web Development with actix-web or axum

Build a basic CRUD API



24-25
Blockchain (Substrate, Bitcoin Rust libraries)
Explore Rust’s role in blockchain development



26-27
Testing (cargo test, clippy), Debugging
Optimize and refactor previous projects



28
Final Project
Build a REST API or CLI Tool as a capstone project


Following this structured plan ensures a smooth transition from Rust fundamentals to real-world applications. By the end of this journey, you will have a solid foundation in Rust and be ready to build production-grade projects.Happy Coding! ?